
Inference in the CLNM
Based on S1-S4, we can compute the first two moments of
, prove the GM theorem, and compute the first moment of


2
. We now investigate the consequence of adding

 S5: u|X~N

Rks:
 S3-S5 can be written succinctly as u|X~N0,2In. If we add

S1, we get y|X~NX,2In.
 The normality assumption is "dubious". The following

material can be thought of as an example of finite sample
theory, or as a guide to some of the results that will obtain
based on asymptotic arguments (i.e. approximations that
improve with sample size).



In what follows, I impose S1-S5, drop the qualifier
"conditional on X" and refer to the results D0-D5 from the
handout "Inference in the Classical Linear Normal Model".
Theorem R1:


 and u are joint normally distributed.

Proof:


u




0


L
M

u

where u is MVN. Use D1.

Theorem R2:

~N,2X ′X−1

Proof: We’ve already established the first two moments
using S1-S4. From the theorem above, we get that the
marginal of


 is MVN (apply I 0 to LHS).



Theorem R3: u ′u/2~2n − K
Proof:

u ′u
2  u


′M u

  z ′Mz

where z~N0, I. But by D3, z ′Mz~2trM.

Theorem R4:

 and 

2
are independent.

Proof:
E


 − u ′  Luu ′M  2LM  0

So by R1 and D0,

 and u ′ are independent. It follows that

 and every function of u are also independent.
Theorem R5:


 achieves the Cramer-Rao Lower Bound.

Rk: This means that under S1-S5,

 has minimum variance

in the class of all unbiased estimators (not just linear ones).



This provides a substantial improvement over the GM
theorem.
Definition: A r.v. has a Student’s t-distribution if it can be
expressed as the ratio of a standard normal r.v. over the
square root of an independent 2 r.v. divided by its d.f.
Symbolically,

tm  z
2m/m

where z and 2m are independent.
Definition: A r.v. has a Snedecor’s F-distribution if it can be
expressed as the ratio of two independent 2 r.v.’s each
divided by its d.f. Symbolically,

Fm1,m2 
1

2m1/m1

2
2m2/m2



Theorem: 

 j −  j/s.e. 


 j~tn − K

Proof:

 j −  j

s.e. 

 j




 j −  j


2
X ′X−1jj




j−j

2X′X−1jj

u ′u
2 /n − K

The numerator is a standard normal r.v., and the
denominator is the square root of an indepent 2 r.v.
divided by its d.f.



Before stating the next theorem, define
VR


  2RX ′X−1R ′ and VR


  

2
RX ′X−1R ′. Assume

R ∈ qxK, r ∈ SpR, and rankR  q.
Theorem: Under Ho : R  r,

R

 − r ′ VR




−1
R

 − r/q~Fq,n − K

Proof: By D1
R

 − r~NR − r,VR




So, under Ho, R

 − r ′ VR




−1
R

 − r~2q by D2. ∴

R

 − r ′ VR




−1
R

 − r/q 

R

 − r ′ VR




−1
R

 − r/q


2
/2

is the ratio of two indendent 2 r.v.s each divided by its d.f.



:Testing hypotheses about a single parameter
Suppose we wish to test the simple null hypothesis
Ho :  j  c, where c ∈ .
Step 1. Determine the distribution of a test statistic under
the null.
Given 


 j −  j/s.e. 


 j~tn − K where K denotes the total

number of regressors (including the intercept), we see that
under the null


 j − c

s.e. 

 j

~tn − K

Rks:
 We like to choose a test statistic with known distribution.
 In theory, we should choose test statistics that do not involve

a loss of information relative to the whole sample (i.e.



sufficient statistics) so as to achieve high efficiency (see
below).

Step 2. Choose a significance level .
Rk: Conventional choices are  ∈ . 1, . 05, . 01

Step 3. Choose an acceptance for the test statistic of Step
1 (critical region) such that Pr(rejecting Ho|Ho is true)≤ .
Rks:
 The size of a test is sup Pr(rejecting Ho|Ho is true). For most

tests, the size and significance level are the same.
 The power of a test is Pr(rejecting Ho|Ho is false)
 The best choice of an acceptance/critical region given the

significance level is one that maximizes the the power. The
solution depends on the alternative hypothesis.



3a. Simple alternative: H1 :  j  c ′

By the Neyman-Pearson Lemma, there’s a test that
maximizes power given the size. It’s based on ordering
values of the relative likelihood of the (sample) test statistic
  L0/L1 and including all points with  ≤ ∗ in the
acceptance region, with ∗ chosen to satisfy the
significance level constraint.

3b. Composite one sided-alternative H1 :  j  c
Under H1, the test statistic 


 j − c/s.e. 


 j will tend to be

positive (more precisely, positive values of this test statistic
are more likely under each point in the alternative than
under the null; negative values are more likely under the
null). So the critical region is chosen to reject if the realized
value of the test statistic is a large, positive number.



The form of the test is to choose a critical value, t∗, and
reject if the test statistic exceeds the critical value, where t∗
is chosen to satisfy

Pr

 j − c

s.e. 

 j

≥ t∗  

Ex: Suppose we estimate the model
yi  0  1xi1  2xi2  3xi3  ui

using n  32 observation. We’ll have 32 − 4  28 d.f. Here’s
a table of conventional significance levels and the
associated critical values for a one-sided alternative:



 t∗

. 10 1.321

.05 1.717

.01 2.508

 If the realized value of the test statistic is 1.9, we would say
"H0 is rejected at the 5% level, but not at the 1% level"

 If the realized value of the test statistic is 2.7, we would say
"H0 is rejected at the 1% level"

 If the realized value of the test statistic is 0.9, we would say
"H0 is not rejected at the 10% level"

Rks:
 Some authors use "accepted" as a synonym for "not

rejected", others take great offence at this usage.



 Because the form of the best test is the same for all points
under the alternative, this test is called uniformly most
powerful, or UMP.

 If we had the composite null Ho :  j ≤ c versus the
composite one-sided alternative H1 :  j  c, we would
follow exactly the procedure above. Intuitively, the point
 j  c is the most difficult point under the null to reject, so
we use it to "represent" the null.

 If the composite one-sided alternative is H1 :  j  c, we
would proceed as above, but change the sign on the critical
value (i.e. reject if the realized value of the test statistic is a
large negative number).



3c. Composite two sided-alternative H1 :  j ≠ c
Both large positive and large negative values of the test
statistic are much more likely under the alternative than
under the null. So the form of the critical region will be to
reject is the realized test statistic has absolute value that
exceeds a critical value t/2

∗ that is chosen to satisfy

Pr abs

 j − c

s.e. 

 j

≥ t/2
∗  

Using our example from section 3b above, we can expand
the table to



 t∗ t/2
∗

. 10 1.321 1.717

.05 1.717 2.074

.01 2.508 2.819

So if the realized value of the test statistic is −1.9, we say
"we reject H0 at the 10% level but not at the 5% level".
Definition: A test is called unbiased if the probability of
rejection under each point in the null is always less than the
probability of rejection under each point in the alternative.
Rks:
 The test for a two sided alternative described above is UMP

if we restrict attention to unbiased tests (i.e. it’s UMPU)



On tests, I expect you to give me the following information
1. State explicitly H0 and H1
2. Choose a test statistic and give its distribution under H0
3. Compute the realized value of the test statistic
4. List the appropriate critical values at the conventional

levels and state if the test statistic is significant or
insignificant at the standard levels.

Rks:
 If not explicitly stated in the question, you should take the

two-sided alternative as the default.



: Computing p-values
Suppose we compute the value of the significance level,
call it ∗, at which we are just indifferent between accepting
or rejecting H0. We call ∗ the p-value of the test.
For example, suppose the test statistic follows a t40
distribution, and its realized value is given by

abs

 j − c

s.e. 

 j

 1.85

Using

Pr abs

 j − c

s.e. 

 j

≥ 1.85  2. 0359 . 0718

we get a p-value of 7.18%



Rks:
 Choosing significance levels seems arbitrary. Reporting

p-values is a way of letting the reader choose. For every
significance level below the p-value, H0 is not rejected. For
every significance level above the p-value, H0 is rejected.

 It’s easy to compute p-values on a computer.
 With only tables available (as during tests), I prefer that you

follow my procedure to approximate the p-value (i.e. say
something like "we reject at the 10% but not at the 5% level",
rather than just "we don’t reject at the 5% level").



:Statistical versus Economic significance

 With a large enough sample, our test statistic will become
arbitrarily large for any point under the alternative (power
goes to 1 as sample size grows to infinity), i.e.

abs

 j − c

s.e. 

 j

↑  w.p.1 for all  j ≠ c

so even alternatives arbitrarily close to c will lead to
statistical rejection. This doesn’t mean that the rejection is
economically significant. For example, you may find that
you can reject the hypothesis that returns are unpredictable
(  0), but that doesn’t mean necessarily that the
predictable returns are large enough for you to make enough
money to justify, say, trading costs.



 Don’t forget that failure to reject has to be interpreted
similarly. If we have very good power against alternatives
 j  1  a, where  is small, then we would have much
more confidence in H0 then we would if our test has poor
power even against distant alternatives (see the discussion on
confidence intervals below).



:Confidence Intervals
Definition: A confidence interval gives an interval (rather
than a point) estimate of a parameter.
To construct a confidence interval, we begin with a
probability statement such as

Pr −t/2
∗ ≤


 j −  j

s.e. 

 j

≤ t/2
∗  1 − 

Then we manipulate this statement to obtain
Pr


 j − t/2

∗  s.e. 

 j ≤  j ≤


 j  t/2

∗  s.e. 

 j  1 − 

This gives us a random interval (i.e. the endpoints are
random) that will cover  j 1 − % of the time (i.e. in
repeated samples,  j will be in the random interval 1 − %
of the time).



If we replace the random endpoints with their realizations,
we get a 1 − % confidence interval.

Rks:
 Suppose the computed CI is −1.2,2.7. We can’t say "The

probability that  j falls in the interval −1.2,2.7 is 1 − .
Either  j falls in the interval or it does not, so the correct
probability is either 0 or 1! The phrase "confidence interval"
refers to our confidence in the procedure used to construct
the interval.

 There is a close link between a CI and hypothesis testing. If
c ∈


 j  t/2

∗  s.e. 

 j then we won’t reject H0 :  j  c at

the % level; otherwise, we will.



 A short CI says that we have accurately estimated  j; we feel
very differently about not rejecting H0 in such a situation
then we would if the CI was very wide.

 I’ve shown you how to construct the shortest CI for  j; other
choices are possible and sometimes more interesting (eg. a
one-sided CI).



:Testing hypotheses about a linear combination  ′
Suppose we wish to test H0 :  ′  a vs H1 :  ′  a
where  ∈ K

Under the null,
 ′

 − a

s.e.  ′



~tn − K

Therefore

Pr  ′

 − a

s.e.  ′


≤ −t∗  

so we can proceed just as we did with a single coefficient
(the same is true for two sided tests, composite one-sided
null versus composite one-sided alternative, etc.).



Recall  ′  1,2,,K

so  ′  11  22   KK

Two issues

:Examples of  ′  a
(i) H0 : 1  0  H0 :  ′  a

for  ′  1,0,0, . . . , 0 and a  0
(ii) H0 : 1  2  H0 :  ′  a

for  ′  1,−1,0, . . . , 0 and a  0
(iii) H0 : 1  2  1  H0 :  ′  a

for  ′  1,1,0, . . . , 0 and a  1



:Computing s.e.  ′



~N,2X ′X−1

∴  ′

~N ′,2 ′X ′X−1

So s.e.  ′

   ′V




1/2

For example, if  ′  1,−1,0, . . . , 0, then
 ′V


  var


1 − 2cov


1,


2  var


2



:An alternative procedure for testing l.c.
Suppose we wish to test H0 : 1  2 vs. H0 : 1  2.
Define 1  1 − 2. Clearly, the original null is equivalent
to H0 : 1  1 vs. H0 : 1  0.
Now, rewrite the model as

yi  1  2x1i  2x2i KxKi  ui 

yi  1x1i  2
x 2i KxKi  ui

where x 2i ≡ x2i  x1i. So testing the linear combination
reduces to testing a single coefficient.
Note also that if we want to impose the restriction 1  2,
we could do so by dropping x1 from the regression.



:Testing Multiple Linear Restrictions
Suppose we wish to test

H0 : R  r
vs H1 : R ≠ r

where R ∈ qxK, rankR  q, and r ∈ SpR.
 Each row of R and r corresponds to a single linear restriction

of the form H0 :  ′  a,

R  r  

R111  R122   R1KK  r1

R211  R222   R2KK  r2

 

Rq11  Rq22   RqKK  rK



 rankR  q "no redundant restrictions", i.e. we don’t have
H0 : 1  0,2  0,1  2  0

 r ∈ SpR restrictions are consistent so there is a solution,
i.e. we rule out

H0 : 1  5,2  3,1  2  4
 There are many algebraically equivalent ways to express the

restrictions embodied in H0 : R  r. The geometric
approach shows that it doesn’t matter which "basis" we pick
to represent the restrictions, we’ll get the same results.

 The case where the null maintains some l.c. hold with
equality while others hold with inequality does not have an
obviously best test and will not be considered here.



:Test statistics
Under the null, R  r

R

~Nr,RV


R ′ where V


  2X ′X−1

∴ R

 − r

′
RV


R ′ −1

R

 − r ~2q

Rk:
 If 2 is unknown, an asymptotic approach (Wald Test)

replaces V

 with a consistent estimator (see next chapter)

 In the CLNM, if 2 is unknown, an exact finite sample test
statistic can be constructed because

R

 − r

′
RV


R ′ −1

R

 − r /q

n − K
2
/2/n − K

is obviously the ratio of two independent 2 r.v.’s each



divided by its d.f. Therefore

∗ ∗ R

 − r

′
RV


R ′

−1
R

 − r /q~Fq,n − K

where V

  

2
X ′X−1



:Restricted Least squares estimator (RLS)
Define the (RLS) estimator as


∗  arg min

∈K:R

r
y − X


 ′y − X




where rankR  q and r ∈ SpR. The solution is

∗ 


  X ′X−1R ′RX ′X−1R ′−1r − R




Rks:
 This form of the estimator is more useful for deriving

properties than for computation.
 Let y ∗  X


∗ and u∗  y − y ∗

 Easy to show that if the restrictions are valid then
E

∗|X  

 Exercise: Compute V

∗|X and compare to V


|X



Proof of the formula for

∗ (for your enjoyment)

Theorem: Suppose  is a p.d. matrix, R has full column
rank, and  ∈ SpR. Then

min
s.t. Rc

c ′c   ′R−1R ′ −1

and is achieved at c∗  −1R ′R−1R ′ −1

Proof:
Rc∗  R−1R ′R−1R ′ −1  

so c∗ satisfies the constraint. It yields the value
c∗′ c∗   ′R−1R ′ −1R−1−1R ′R−1R ′ −1

  ′R−1R ′ −1

Let 1/2 be a square root matrix for , i.e.   1/2 ′1/2.
Let c be any other solution of Rc  .



Define
Y1  1/2c
Y2  1/2c∗

By Cauchy-Schwartz,
Y1
′ Y2 ≤ ‖Y1‖‖Y2‖

 c ′c∗ ≤ c ′c 
1/2
c∗′ c∗1/2

But
c ′c∗  c ′R ′R−1R ′ −1

  ′R−1R ′ −1  c∗′ c∗1/2

Therefore
c∗′ c∗ ≤ c ′c ∀c : Rc  



Application:

∗  arg min

∈K:R

r
y − X


 ′y − X




 arg min
∈K:R


r

u ′u  X

 − X


 ′X


 − X




 arg min
∈K:R


−

r−R





 −


 ′X ′X


 −




So apply the theorem above with   X ′X, c 

 −


,

  r − R

, to get formula for RLS given above.



:Alternative forms of the test statistic ∗ ∗
u∗′
u∗  u ′u  y − y ∗ ′

y − y ∗

 u ′u  X

 − X


∗

′X

 − X


∗

 u ′u  

 −


∗

′X ′X

 −


∗

 u ′u  R

 − r

′
RX ′X−1R ′ −1

R

 − r

∴ ∗ ∗ ≡ R

 − r

′
RV


R ′

−1
R

 − r /q


u∗′
u∗ − u ′u /q

u ′u/n − K
≡ ∗ ∗ ∗

Rk: The approach that leads to ∗ ∗ generalizes to the
case where V


  2 with  ≠ I but not ∗ ∗ ∗



If we have "intercepts" (i.e.  ∈ SpX) under both the
restricted and unrestricted models, then we can write

∗ ∗ ∗ 

u∗′
u∗

y′Ay
−

u ′u
y′Ay

u ′u
y′Ay

n − K
q

 1 − R∗2 − 1 − R2
1 − R2

n − K
q

 R2 − R∗2
1 − R2

n − K
q ≡ ∗ ∗ ∗ ∗

Rk: The interpretation of the test statistic for ∗ ∗ ∗ ∗ is
easy, but it is the least generalizable.



:Computing RLS estimator and its covariance matrix
The general solution to R  r is given by

  0  C
where 0 is any particular solution (i.e. satisfies R0  r)
and the columns of C form a basis for the null space of R
(i.e. Rz  0 iff z  C for some ). Write

y  X  u
 X0  C  u

Because 0 is known, we can subtract X0 from both sides
of the equation to obtain

y − X0  XC  u  y  X  u
The transformed model satisfies MLR.1-MLR.6 and  is
unrestricted, so we can estimate it by OLS. Then compute
∗  0  C


, and V


∗  CV


C ′



:Examples
1. Suppose we wish to test H0 : 1  0. This corresponds
to the choices If R  1,0,0, . . . , 0 and r  0. Then ∗ ∗ is
given by

R

 − r

′
RX ′X−1R ′ −1 R


 − r /1


2



 i

2


2
X ′X−1  ii



 i

s.e. 

 i

2

So the F-test statistic for the null is exactly the square of the
t-test statistic for the same null (against a two-sided
alternative).



2. Suppose the model is (W 4.31)
yi  0  1xi1  2xi2 5xi5  ui

OLS estimation with n  353 yields SSR  183.186 and
R2 . 6278. (NOTE: K  6). We wish to impose the
restrictions 3  4  5  0. The restricted model is

yi  0  1xi1  2xi2  ui

Estimating the restricted model by OLS yields
SSR∗  198.311 and R∗2 . 5971. Using the form ∗ ∗ ∗ of
the test statistic, we see that the realized value is

198.311 − 183.186/3
183.186/353 − 6  9.55

Large values of the test statistic lead to rejection. Critical
values for the F3,347 are not provided in the table. But
using PrF3,347 ≥ 3.95  PrF3,120 ≥ 3.95 . 01, we
conclude that we reject at the 1% level.



3. Testing for overall significance
Suppose we have a model with an intercept and we wish to
test if all the coefficients except the intercept are zero. The
restricted model is

y  0  u
Clearly SSR∗ ≡ u∗′

u∗  y ′Ay where A  I − 1/n ′ and
R∗2  0. Therefore, using the form ∗ ∗ ∗ ∗, the test statistic
reduces to

R2

1 − R2
n − K
K − 1

Rk: STATA (and most other packages) routinely report this
F-statistic as part of their OLS results.


